GCE Examinations Advanced Subsidiary / Advanced Level

Statistics Module S2

Paper B MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

S2 Paper B – Marking Guide

1.	(a)	e.g. list of all the sampling units	B1	
	<i>(b)</i>	 (i) frame – list of cars serviced at garage units – individual cars (ii) frame – list of people involved in trial 	B1 B1 B1	
		units – individual people	B1	(5)
2.	(a)	Poisson (with $\lambda = 4.2$)	B1	
	<i>(b)</i>	 (i) e.g. may be more or less species that like nuts (ii) e.g. will last longer so may get more species visiting 	B1 B1	
	(c)	let $X =$ no. of species that visit $\therefore X \sim Po(4.2)$		
		$P(X=6) = \frac{e^{-4.2} \times 4.2^6}{6!} = 0.1143 \text{ (4sf)}$	M1 A1	
	(d)	$P(X > 2) = 1 - P(X \le 2)$	M1	
		$= 1 - e^{-4.2} (1 + 4.2 + \frac{4.2^2}{2})$	M1 A1	
		= 1 - 0.2102 = 0.7898 (4sf)	Al	(9)
3.	(a)	$1.6 \times \frac{1}{20} = 0.08$	M1 A1	
	(b)	mean = 10	Al	
		variance = $\frac{1}{12} (20 - 0)^2 = \frac{100}{3}$	M1 A1	
	(c)	= $P(X \text{ in middle 4 cm}) \times P(Y \text{ in middle 4 cm})$	M1	
		$= (4 \times \frac{1}{20}) \times (4 \times \frac{1}{16})$	M1 A1	
		$=\frac{1}{5} \times \frac{1}{4} = \frac{1}{20}$	A1	
	(d)	= $1 - [P(X \text{ in middle } 16 \text{ cm}) \times P(Y \text{ in middle } 12 \text{ cm})]$	M1 A1	
		$= 1 - [(16 \times \frac{1}{20}) \times (12 \times \frac{1}{16})]$	M1	
		$= 1 - \left(\frac{4}{5} \times \frac{3}{4}\right) = 1 - \frac{3}{5} = \frac{2}{5}$	A1	(13)
4.	(a)	let $X = \text{no. of failures per hour } \therefore X \sim \text{Po}(3)$		
	(11)	P(X=0) = 0.0498	A1	
	<i>(b)</i>	let $Y =$ no. of failures per half-hour $\therefore Y \sim Po(1.5)$	M1	
		$P(Y > 4) = 1 - P(Y \le 4) = 1 - 0.9814 = 0.0186$	M1 A1	
	(c)	let $F = \text{no. of failures per 24 hrs}$ $\therefore F \sim \text{Po}(72)$	M1	
		N approx. $G \sim N(72, 72)$ P($F < 60$) $\approx P(G < 59.5)$	M1 M1	
		$= P(Z < \frac{59.5 - 72}{\sqrt{72}}) = P(Z < -1.47)$	Al	
		= 1 - 0.9292 = 0.0708	Al	
	(d)	$P(F = 72) \approx P(71.5 < G < 72.5)$	M1	
	()	$= P(Z < \frac{72.5 - 72}{\sqrt{72}}) - P(Z < \frac{71.5 - 72}{\sqrt{72}})$	M1	
		= P(Z < 0.06) - P(Z < 0.06)	A1	
		= 0.5239 - 0.4761 = 0.0478	Al	(13)

5.	(a)	let $X =$ no. of dice showing $6 \therefore X \sim B(6, \frac{1}{6})$	M1	
		$P(X=0) = \left(\frac{5}{6}\right)^6 = 0.3349 \text{ (4sf)}$	M1 A1	
	<i>(b)</i>	$P(X > 1) = 1 - P(X \le 1)$	M1	
		$= 1 - \left[\left(\frac{5}{6}\right)^6 + 6\left(\frac{1}{6}\right) \left(\frac{5}{6}\right)^5 \right]$	M1 A1	
		= 1 - 0.7368 = 0.2632 (4sf)	A1	
	(c)	let $Y =$ no. of dice showing odd $\therefore Y \sim B(6, \frac{1}{2})$	M1	
		P(Y=3) = 0.6563 - 0.3438 = 0.3125	M1 A1	
	(d)	let $S = \text{no. of times it shows a } 6 \therefore S \sim B(8, \frac{1}{6})$	M1	
		$H_0: p = \frac{1}{6}$ $H_1: p > \frac{1}{6}$	B1	
		$P(S \ge 3) = 1 - P(S \le 2)$	M1	
		$= 1 - \left[\left(\frac{5}{6}\right)^8 + 8\left(\frac{1}{6}\right) \left(\frac{5}{6}\right)^7 + \frac{8 \times 7}{2} \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^6 \right]$	M1 A1	
		= 1 - 0.8652 = 0.1348	A1	
		more than 5% \therefore not significant, insufficient evidence of bias	A1	(17)

Total (75)

Performance Record – S2 Paper B

1	2	3	4	5	6	Total
sampling	Poisson	rect. dist.	Poisson, N approx.	binomial, hyp. test	p.d.f., mode, c.d.f., median	
5	9	13	13	17	18	75
	sampling	sampling Poisson	sampling Poisson rect. dist.	sampling Poisson rect. dist. Poisson, N approx.	sampling Poisson rect. dist. Poisson, binomial, N approx. hyp. test	sampling Poisson rect. dist. Poisson, N approx. binomial, N approx. binomial, hyp. test mode, c.d.f., median